Contents

Preface	vii
Acknowledgements	ix
Some Useful Formulae	x
1. Fundamentals of Amplification	1
1.1: Basic Theory of Valves	2
1.2: Valve Diodes	2
1.3: Triodes	4
1.4: Anode Resistance, r _a	6
1.5: Amplification Factor, μ	6
1.6: Transconductance, g _m	7
1.7: Amplification	9
1.8: The Load Line	9
1.9: Biasing	11
1.10: The Cathode Load Line	13
1.11: Harmonic Distortion	15
1.12: Intermodulation Distortion	17
1.13: Cut-Off Clipping	18
1.14: Grid-Current Clipping	19
1.15: The Effect of Load on Distortion	21
1.16: The Golden Ratio	22
1.17: The AC Load Line	23
1.18: The Cathode Bypass Capacitor	25
1.19: Equivalent Circuits	29
1.20: Input and Output Impedance	22
1.21: Output Impedance of a Triode Gain Stage	30
1.22: Input Impedance of a Triode Gain Stage	32
1.23: Valve Ratings and the Safe Operating Area	33
1.24: Component Ratings	35
1.25: Types of Resistor	37 38
1.26: Types of Capacitor	30
2. The Small-Signal Pentode	40
2.1: Secondary Emission	41
2.2: The Suppressor Grid	42
2.3: The Screen Grid	42
2.4: The Effect of Screen Voltage	43
2.5: The Effect of Screen Current	45
2.6: The Anode/Screen Current Ratio	46
2.7: Deriving Grid Curves for Any Screen Voltage	47
2.8: A Simple Pentode Gain Stage	48
2.9: Effect of Screen and Cathode Bypassing	50

	2.10: Effect of Load on Distortion	52
	2.11: Designing a Pentode Gain Stage the Easy Way	53
	2.12: Pentodes Connected as Triodes	55
	2.13: Pentode-Triode Morph Control	56
	2.14: Variable Screen Bypass	57
3.	Noise, Hum and Microphonics	59
	3.1: Noise	59
	3.2: Noise in Resistors	62
	3.3: Noise in Triodes	63
	3.4: Noise in Pentodes	64
	3.5: Noise Calculations for a Triode Gain Stage	64
	3.6: Noise Calculations for Cascaded Triodes	66
	3.7: Principles of Low-Noise Design	67
	3.8: Hum	69
	3.9: Electric Fields	69
	3.10: Magnetic Fields	70
	3.11: Transformers and Hum	70
	3.12: Electric Shielding	71
	3.13: Magnetic Shielding	72
	3.14: Lead Dress	73
	3.15: Rectifier-Induced Heater Hum	75
	3.16: Electrical Heater Balancing	76
	3.17: Heater-Cathode Leakage and Heater Elevation	77
	3.18: DC Heaters	79 80
	3.19: Microphony 3.20: Diode Noise Gate	80 80
	5.20. Diode Noise Gate	80
4.	Coupling and Filters	82
	4.1: Electromagnetic Guitar Pickups	82
	4.2: Active Guitar Pickups	83
	4.3: Piezoelectric Pickups	84
	4.4: Equivalent Circuit of a Pickup	84
	4.5: Electromagnetic Pickup Frequency Response	85
	4.6: The Amplifier Input Network	87
	4.7: High Impedance Input for Piezo Pickups	89
	4.8: Interstage Filters	89
	4.9: Understanding Filters with Simplified Bode Plots	90
	4.10: High-Pass Filter 4.11: Low-Pass Filter	92 93
	4.11. Low-rass Filter 4.12: Attenuating High-Pass Filter	93
	4.13: Attenuating Low-Pass Filter	95 95
	4.14: High-Pass Shelving Filter	95
	4.15: Low-Pass Shelving Filter	96
	4.16: Band-Pass Filter	97
	4.17: The Anode Bypass Capacitor	98
	4.18: Blocking Distortion	100
	6	

	4.19: Avoiding Blocking Distortion	102
	4.20: DC Coupling	104
	4.21: Level Shifting	105
	4.22: Grid-Cathode Arc Protection	105
5.	Valves in Parallel	107
	5.1: Anode Characteristics of Parallel Valves	107
	5.2: Noise in Parallel Valves	108
	5.3: The Matchless Input Stage	109
	5.4: The Common-Anode Mixer	110
	5.5: Dissimilar Cathode Circuits	111
	5.6: Blend Control	112
6.	The Cathode Follower	113
	6.1: Gain of the Cathode Follower	113
	6.2: Output Impedance of the Cathode Follower	114
	6.3: Avoiding Oscillation	116
	6.4: Anode Characteristics	116
	6.5: Using the New Anode Characteristics	118
	6.6: Fixed Bias	119
	6.7: Cathode Bias	120
	6.8: DC Coupling	122
	6.9: Heater Elevation	123
	6.10: Input Resistance of the Cathode Follower	124
	6.11: Input Capacitance of the Cathode Follower	125
	6.12: The Pentode as a Cathode Follower	125
	6.13: Transistor Followers	126 127
	6.14: Cathode Followers in Guitar Amps6.15: Controlling Cathode-Follower Clipping	127
	6.16: Bootstrapping for More Gain	129
7	The Cascode	133
′.		
	7.1: Basic Operation of the Cascode	133 134
	7.2: The Effect of Screen Voltage 7.3: Drawing the Anada Characteristics by Hand	136
	7.3: Drawing the Anode Characteristics by Hand 7.4: Equations for the Cascode	138
	7.4. Equations for the Cascode 7.5: Designing a Cascode the Easy Way	139
	7.6: Grid-Leak Biasing and Screen Compression	140
8.	The Cathodyne Phase Inverter	143
٠.	8.1: The Cathodyne	143
	8.2: Gain of the Cathodyne	144
	8.3: Output Impedance	145
	8.4: Designing a Cathodyne	146
	8.5: Fixed Bias	148
	8.6: Cathode Bias	149

8.7: DC Coupling	150
8.8: Input Resistance of the Cathodyne	151
8.9: Input Capacitance of the Cathodyne	151
8.10: Avoiding Unpleasant Distortion Effects	152
9. The Long-Tailed-Pair Phase Inverter	154
9.1: Basic Operation of the Long-Tailed Pair	154
9.2: Common-Mode Rejection Ratio (CMRR)	155
9.3: Gain of the Long-Tailed Pair	156
9.4: Output Impedance	157
9.5: Designing a Long-Tailed Pair	158
9.6: Fixed Bias	159
9.7: Cathode Bias	160
9.8: DC Coupling	161
9.9: Dissimilar Anode Resistors	162
9.10: Input Resistance of the Long-Tailed Pair	163
9.11: Input Capacitance of the Long-Tailed Pair	163
9.12: Adding Global Negative Feedback 9.13: Presence Control	164 166
9.14: Resonance Control	167
9.15: Variable Feedback	168
9.16: Feedback-Free Resonance Control	169
9.17: Scale Control	170
9.18: Effects of Bias on the Long-Tailed Pair	171
9.19: Blocking Distortion	174
10. Feedback	177
10.1: The Universal Feedback Equation	177
10.2: Virtual Earth	179
10.3: Local Feedback	179
10.4: Effect on Headroom	181
10.5: Effect on Distortion and Noise	181
10.6: Effect on Frequency Response	183
10.7: Effect on Input and Output Impedance	184
10.8: Global Feedback: Single-Ended Amplifier Example	185
10.9: Global Feedback: Push-Pull Amplifier Example	188
10.10: Feedback from Alternative Speaker Taps	190
11. Tone Controls	191
11.1: Impedance Considerations	191
11.2: Impedance Scaling	192
11.3: Frequency Range	193
11.4: Simple Treble Controls	195
11.5: Simple Bass Controls	197
11.6: Simple Middle Controls	199
11.7: Tilt Control	201
11.8: The Bandmaster Tone Stack	203
11.6: Simple Middle Controls	19 20

11.9: The Voigt Tone Stack	204
11.10: The James Tone Stack	204
11.11: The Passive Baxandall Tone Stack	205
11.12: The Bone Ray Tone Stack	206
11.13: The FMV Tone Stack	207
11.14: Tone Stack Defeat / Lift	209
12. Effects Loops	210
12.1: Serial and Parallel Effects Loops	210
12.2: Placement of Effects	211
12.3: Line Levels	211
12.4: Effects Loop Input and Output Impedance	213
12.5: Passive Line Out	214
12.6: Active Line Out	215
12.7: Commercial Line-Out Circuits	216
12.8: The Recovery Stage	218
12.9: Practical Serial Effects Loop	219
12.10: Practical Parallel Effects Loops	219
13. Signal Switching	222
13.1: Series and Shunt Switching	222
13.2: Clicks, Pops and Thumps	224
13.3: Light-Dependent Resistors	225
13.4: Relays	226
13.5: Audio Switching with Relays	227
13.6: Control Circuits for Relays	228
13.7: Power Supplies for Relay Circuits	231
13.8: Solid-State Relays	234
13.9: Audio Switching with SSRs	235
13.10: Control Circuits for SSRs	236
13.11: Power Supplies for SSRs	237
13.12: JFET Analog Switches	237
13.13: Audio Switching with JFETs	238
13.14: Control Circuits for JFET Analog Switches	242
13.15: Power Supplies for JFET Analog Switches	243
13.16: Some Two-Channel Switching Topologies13.17: Switching More than Two Channels	244 247
14 Tanalami	240
14. Topology	249
14.1: Low-Gain or 'Clean' Topologies	249
14.2: A Low-Gain Preamp Design	251
14.3: An Approach to Medium and High-Gain Design	251
14.4: Medium-Gain Topologies	255
14.5: A Medium-Gain Preamp Design	256
14.6: High-Gain Topologies	257
14.7: A High-Gain Preamp Design	258
14.8: An Ultra-High-Gain Preamp Design	259

15. Grounding	262
15.1: Safety Earth	263
15.2: Ground Loops	264
15.3: Power-Supply Ripple Current	265
15.4: Power-Supply Smoothing Filters	266
15.5: Signal Currents	268
15.6: Ground Planes	269
15.7: Bus Grounding	270
15.8: Star Grounding	271
15.9: The Ground-to-Chassis Connection	274
15.10: Ground Lift	275
15.11: Grounding Multi-Channel Amplifiers	276
15.12: Miscellaneous Ground Connections	277
Bibliography	278
Index	281